
decodable.co

Executive Summary

Customer 360

Food Delivery Tracking

Fraud Detection

Shipping Logistics Tracking

Website Clickstream Analytics

Conclusion

Use Case
Walkthroughs for
Real-Time Stream
Processing

Executive Summary
Businesses are leveraging stream processing to make smarter and faster business decisions, act on time-sensitive and mission-

critical data, obtain real-time analytics and insights, and build applications with features delivered to end-users in real time.

Decodable’s mission is to make streaming data engineering easy. Decodable delivers the first real-time data engineering service—

that anyone can run. As a platform for real-time data ingestion, integration, analysis, and event driven service development,

Decodable eliminates the need for a large data team, clusters to set up, or complex code to write. Decodable will provide its

customers with:

The ease of use, adoption, and ecosystem of Snowflake

The adoption model of DataDog, GitHub, AWS, GCP, Intercom, and Auth0

The user experience sophistication of Superhuman and Intercom

The developer love of dbt, pandas, Kubernetes, and Visual Studio Code

This eBook explores five common use case scenarios, with additional examples available on our website.

Customer 360

Food Delivery Tracking

Fraud Detection

Shipping Logistics Tracking

Website Clickstream Analytics

 refers to getting a single view of customer engagement across the entire customer journey. It connects apps

and data sources from customer interactions to give businesses a 360-degree customer view. It includes customer data from

a variety of sources, including customer demographics, customer relationship management (CRM), social media, eCommerce,

marketing, sales, customer service, mobile apps, and many other customer touchpoints.

 explores the dramatic changes that have permeated how the world eats. Twenty years ago,

restaurant-quality meal delivery was largely limited to pizza. Today, food delivery has become a global market worth more

than $150 billion, having more than tripled in the last 5 years. The advent of appealing, user-friendly apps and tech-enabled

driver networks, coupled with changing consumer expectations, has unlocked ready-to-eat food delivery as a major category.

 looks at securing online applications and services, which is a major requirement for businesses of all types.

One example of this is mobile device emulators being used to spoof devices and mimic user behavior in an attempt to take

over legitimate user accounts. With telemetry data such as accelerator and gyroscope signals, it is possible to train machine

learning models to identify fraudulent activity and detect automated bots.

 helps enable efficient and economical long-distance transport, which puts it at the center of the

world economy. The ability to see, in real-time, logistics and tracking information helps facilitate better transportation

decisions leading to reduced costs and enhanced services, which plays a key role in improving the customer experience as

well as increasing profitability. Being able to offer order tracking provides customers with peace of mind, can win over

hesitant buyers, and can even build customer loyalty.

 unlocks user activity on the web, and helps provide insight into how visitors get to the

website, what they do once there, how long they stay on any given page, the number of page visits visitors make, and the

number of unique and repeat visitors. Clickstream analytics have the ability to refine data by processing, cleaning, and

transforming the raw data into convenient structures that make analysis of data easy and more accurate.

1

https://www.decodable.co/solution/all
https://docs.google.com/document/d/1RpYvA-p-XwrJZ9DdIlXnaL9oPsHgQwG43vV4bHkY1s8/edit#heading=h.5so9hw52km5k
https://docs.google.com/document/d/1RpYvA-p-XwrJZ9DdIlXnaL9oPsHgQwG43vV4bHkY1s8/edit#heading=h.5ultvcb4fk67
https://docs.google.com/document/d/1RpYvA-p-XwrJZ9DdIlXnaL9oPsHgQwG43vV4bHkY1s8/edit#heading=h.y75y4e3pofmh
https://docs.google.com/document/d/1RpYvA-p-XwrJZ9DdIlXnaL9oPsHgQwG43vV4bHkY1s8/edit#heading=h.1wv3ic9ofzaw
https://docs.google.com/document/d/1RpYvA-p-XwrJZ9DdIlXnaL9oPsHgQwG43vV4bHkY1s8/edit#heading=h.6h0ypt7a6chx

Creating a Pipeline

Decodable uses SQL to process data, something that will feel familiar to anyone

who has used relational database systems. The primary differences you'll notice

are that:

You activate a pipeline to start it, and deactivate a pipeline to stop it.

All pipeline queries specify a source, which identifies where the input data

stream is coming from, and a sink, or where the processed data stream is

going to.

Certain operations, notably JOINs and aggregations, must include window

functions.

Transform, Enrich, Aggregate, and More

For these examples, one or more processing pipelines are used to process the

raw incoming data into the desired form. While a single pipeline can often be

used, it is also possible to use multiple pipelines in a series of stages, with the

output of each one being used as the input for the next. This results in pipelines

that are easier to test and maintain. Each stage in the sequence of pipelines is

used to bring the data closer to its final desired form using SQL queries.

Send to External System

Implicit for each of the use cases being explored, a sink –one that

writes a stream to an external system, such as AWS S3, Kafka, Kinesis,

Postgres, Pulsar, or Redpanda–would be created to allow the results to be

consumed by your own applications and services.

connection

2

https://docs.decodable.co/docs/connections

Customer 360
Customer 360 refers to getting a single view of customer engagement across the entire customer journey. It connects apps and

data sources from customer interactions to give businesses a 360-degree customer view. It includes customer data from a variety

of sources, including customer demographics, customer relationship management (CRM), social media, eCommerce, marketing,

sales, customer service, mobile apps, and many other customer touchpoints.

Businesses can leverage insights gained from a comprehensive customer view to improve and deliver exceptional experiences,

increase customer loyalty, create reliable customer profiles to improve marketing and sales initiatives, streamline and connect

business processes and workflows to improve efficiency and functionality, and reduce time and cost caused by human error in the

customer journey.

In this example, we'll walk through how the Decodable data service is used to clean, transform, and aggregate data from multiple

data sources.

Pipeline Architecture

Customer 360 data comes in many forms from many sources, including call logs, clickstream data, ecommerce activity,

geolocation, NPS systems, and social media feeds. For this example, we will look at transforming two different data sources into a

consistent schema which can then be sent to the same sink to be used for analysis, regardless of the original source

or form of the data.

Below we can see examples of raw call log and clickstream data. Each data source is in a unique data format and uses different

field names for similar data. By using one or more Decodable , which are streaming SQL queries that process data, we

can transform the raw data into a form that is best suited for how it will be consumed.

connection

pipelines

Call Log Records

{

 : ,

 :

}

"log_datatime"
"xml"

"2020-03-04 13:19:22"
"<call_log><activity_id>701C</activity_id><call_id>367e5d7e-

a3e6-4d27a5c7-35706e9dca9d<call_id><user_id>4433a94b-12c5-4397-8837-3eedf11e78e6</user_id><start_time>2020-03-04
13:15:12<start_time><end_time>2020-03-04 13:19:22<
end_time><call_time_seconds>207<call_time_seconds><from_phone_number+37277774841</
from_phone_number><to_phone_number>+37249234343</to_phone_number><outcome>answered</outcome><has_recording>false</
has_recording></call_log>"

Clickstream Log Records

{

 : ,

 :

,

 : ,

 : ,

 : ,

 :
}

"event_timestamp"
"user_id"

"site_id"
"pages_visited"
"total_seconds_on_site"
"avg_percent_viewed"

"2020-11-16 14:32:19"

"4433a94b-12c5-4397-8837-3eedf11e78e6"
"wj32-gao1-4w1o-iqp4"

8
426

28.198543

3

https://docs.decodable.co/docs/connections
https://docs.decodable.co/docs/pipelines

Transform call logs

As with most data services pipelines, the first step is to apply a

variety of transformations to clean up and simplify the input data.

For this example, an inner is used to parse the XML

object blob using the xpaths function and extract the desired

fields. Then the field is converted from a to

a type and the field is

converted to an integer.

select

start_time string

timestamp call_time_seconds

After creating a new pipeline and entering the SQL query, clicking

the button will verify its syntax and then fire up a

new executable environment to process the next 10 records

coming in from the source stream and display the results.

Run Preview

insert into
select

as
as

as
as

as int as
from

select

xml

as
from

 transformed

 call_log.user_id ,

 to_timestamp(call_log.start_time) engagement_datetime,

 engagement_type,

 call_log.call_id engagement_source_id,

 (call_log.call_time_seconds) engagement_seconds

 (

 xpaths(,

 , ,

 , ,

 , ,

 ,
) call_log

)

user_id

cast

'sales call'

'user_id' '//call_log/user_id'
'start_time' '//call_log/start_time'
'call_id' '//call_log/call_id'
'call_time_seconds' '//call_log/call_time_seconds'

`call_log`

-- parse XML to a DOM and extract fields using XPath

 expressions

Transform clickstream

For the website clickstream data, the required transformations for

this example are fairly minimal. Primarily the field names are

changed to match the desired schema for a standardized data

stream, and the field is converted to a

.

event_timestamp

timestamp

insert into
select

as
as

as
as

from

 transformed

 ,

 to_timestamp(event_timestamp) engagement_datetime,

 engagement_type,

 site_id engagement_source_id,

 total_seconds_on_site engagement_seconds

user_id

'website'

`clickstream`

Decodable handles all the heavy lifting on the backend, allowing

you to focus on working directly with your data streams to ensure

that you are getting the results you need.

{

 : ,

 : ,

 : ,

 : ,

 :
}

"user_id"
"engagement_datetime"
"engagement_type"
"engagement_source_id"
"engagement_seconds"

"4433a94b-12c5-4397-8837-3eedf11e78e6"
"2020-11-16 22:59:59"

"website"
"wj32-gao1-4w1o-iqp4"

426

4

https://docs.decodable.co/docs/function-reference#xml-functions

Food Delivery Tracking
How the world eats is changing dramatically. Twenty years ago, restaurant-quality meal delivery was largely limited to pizza.

Today, food delivery has become a global market worth more than $150 billion, having more than tripled in the last 5 years. The

advent of appealing, user-friendly apps and tech-enabled driver networks, coupled with changing consumer expectations, has

unlocked ready-to-eat food delivery as a major category.

In this example, we'll walk through how the Decodable data service is used to clean, transform, and enrich real-time food delivery

data. The processed data can then be used to send customers SMS text messages with progress status updates.

Pipeline Architecture

Below we can see a sample of raw food delivery data. For this example, the source of the data is a legacy system that produces

an XML object.

{

 : ,

 :

}

"updated_at"
"xml"

"2022-01-01 10:53:11"
"<order id= 629812004 state= 8 state_human_readable= dispatched tracking_url= https://example-app.com/

order/9f0Ljd9g3 ><branch id= 382102714 ><location><latitude>37.869169</latitude><longitude>-122.206648</longitude></
location></branch><customer id= 782312311 ><location><latitude>37.874173</latitude><longitude>-122.220741</longitude></
location></customer><driver id= 429178231 ><location><latitude>37.8924376</latitude><longitude>-122.216880</
longitude></location></driver><timestamps><ordered_at>2022-01-01 10:35:00</ordered_at><pending_at>2022-01-01 10:37:00</
pending_at><vendor_accepted_at>2022-01-01 10:39:00</vendor_accepted_at><driver_accepted_at>2022-01-01 10:44:00</
driver_accepted_at><dispatched_at>2022-01-01 10:49:00</dispatched_at><completed_at/><cancelled_at/></
timestamps><estimations><earliest_completed_at>2022-01-01 10:59:00</earliest_completed_at><latest_completed_at>2022-01-01
11:05:00</latest_completed_at></estimations><message>Sorry, your order is
running a little late.</message><notification>Sorry, your order is running a little late.</notification></
order>"

\" \" \" \" \" \" \"
\" \" \"

\" \"
\" \"

Even when the XML is examined in its structured form, it is far more complex and detailed than what customers want to know

about their delivery and what is needed to update them with status messages. By using one or more Decodable , which

are streaming SQL queries that process data, we can transform the raw data into a form that is best suited for how it will be

consumed.

pipelines

< >

< >

< >

< > </ >

< > </ >

</ >

</ >

< >

< >

< > </ >

< > </ >

</ >

</ >

< >

< >

< > </ >

< > </ >

</ >

</ >

< >

< > </ >

< > </ >

< > </ >

< > </ >

< > </ >

< />

< />

</ >

< >

< > </ >

< > </ >

</ >

< > </ >

< > </ >

</ >

order
branch
location
latitude latitude
longitude longitude
location

branch
customer
location
latitude latitude
longitude longitude
location

customer
driver
location
latitude latitude
longitude longitude
location

driver
timestamps
ordered_at ordered_at
pending_at pending_at
vendor_accepted_at vendor_accepted_at
driver_accepted_at driver_accepted_at
dispatched_at dispatched_at
completed_at
cancelled_at
timestamps
estimations
earliest_completed_at earliest_completed_at
latest_completed_at latest_completed_at
estimations
message message
notification notification
order

 id= state= state_human_readable= tracking_url=
 id=

 37.869169
 -122.206648

 id=

 37.874173
 -122.220741

 id=

 37.8924376
 -122.216880

 2022-01-01 10:35:00
 2022-01-01 10:37:00
 2022-01-01 10:39:00
 2022-01-01 10:44:00
 2022-01-01 10:49:00

 2022-01-01 10:59:00
 2022-01-01 11:05:00

 span style= color: red; Sorry, your order is running a little late. /span
 Sorry, your order is running a little late.

"629812004" "8" "dispatched" "https://example-app.com/order/9f0Ljd9g3"
"382102714"

"782312311"

"429178231"

< " "> < >

5

https://docs.decodable.co/docs/pipelines

Parse XML object

As with most data services pipelines, the first step is to apply a

variety of transformations to clean up and simplify the input

data. For this example, the first pipeline is used to parse and

restructure the raw data as follows:

parse the XML object blob using the function and

extract the desired fields

 xpaths

numeric fields will be converted from string to integers or

floats as needed

the time-based fields will be converted from string to

timestamp data types, which enables more sophisticated

processing in subsequent pipelines

insert into
select

as bigint as
as bigint as

as bigint as
as

as notification
as

as
as

as
as float as
as float as

as float as
as float as

as float as
as float as

from
select

 xpaths(xml,

) as
 from
)

 parsed

 (.) order_id,

 (.) branch_id,

 (.) customer_id,

 . state_human_readable,

 . ,

 to_timestamp(.) earliest,

 to_timestamp(.) latest,

 to_timestamp(.) dispatched_at,

 to_timestamp(.) completed_at,

 (.) branch_lat,

 (.) branch_lon,

 (.) customer_lat,

 (.) customer_lon,

 (.) driver_lat,

 (.) driver_lon

 (

 -- parse XML to a DOM and extract fields using XPath expressions

delivery_update

`delivery-raw`

cast
cast
cast

cast
cast
cast
cast
cast
cast

delivery_update order_id
delivery_update branch_id
delivery_update customer_id

delivery_update state_human_readable
delivery_update notification

delivery_update earliest
delivery_update latest
delivery_update dispatched_at
delivery_update completed_at

delivery_update branch_lat
delivery_update branch_lon
delivery_update customer_lat
delivery_update customer_lon
delivery_update driver_lat
delivery_update driver_lon

 'order_id', '//order/@id',

 'branch_id', '//order/branch/@id',

 'customer_id', '//order/customer/@id',

 'state_human_readable', '//order/@state_human_readable',

 'notification', '//order/notification',

 'earliest', '//order/estimations/earliest_completed_at',

 'latest', '//order/estimations/latest_completed_at',

 'dispatched_at', '//order/timestamps/dispatched_at',

 'completed_at', '//order/timestamps/completed_at',

 'branch_lat', '//order/branch/location/latitude',

 'branch_lon', '//order/branch/location/longitude',

 'customer_lat', '//order/customer/location/latitude',

 'customer_lon', '//order/customer/location/longitude',

 'driver_lat', '//order/driver/location/latitude',

 'driver_lon', '//order/driver/location/longitude'

Enrich data stream

For this example, we want to enrich the data stream with the

delivery driver's progress in reaching the customer destination.

SQL provides a comprehensive set of powerful , such

as power and sqrt, which can be leveraged to perform

calculations that are useful for subsequent processing. This

somewhat complex SQL query example could be broken down

into two smaller, simpler queries; but it is also possible to create

pipelines of arbitrary complexity based on your requirements.

An inner nested select query calculates distances using the

latitude and longitude of the origination point (i.e., the branch

location), the driver location, and the customer location. By

using the SQL case statement, we can avoid performing the

expensive haversine distance formula based on whether the

driver has left the branch location or arrived at the customer

location. By taking care to reduce the computational complexity

of the pipeline, stream processing throughput can be increased.

Once the distances have been calculated, the surrounding

query calculates a progress percentage based on how far the

driver is from the customer and the overall distance between

the branch and the customer.

functions

insert into status

select

*

- / *

 as
from

select

notification

case

when = then
when <> then
else *

- * +

* *

* *

- *

end as
case

when = then
when <> then
else *

- * +

* *

* *

- *

end as
from

 ,

 ((branch_distance driver_distance) branch_distance)

 percent_complete

 (

 order_id,

 branch_id,

 customer_id,

 state_human_readable,

 ,

 earliest,

 latest,

 (dispatched_at,)
 (completed_at,)
 ((

 (((branch_lat customer_lat) .),)
 (customer_lat .)
 (branch_lat .)
 (((branch_lon customer_ lon) .),)

))

 branch_distance,

 (timestamps.dispatched_at,)
 (timestamps.completed_at,)
 ((

 (((driver_lat customer_lat) .),)
 (customer_lat .)
 (driver_lat .)
 (((driver_lon customer_lon) .),)

))

 driver_distance

 parsed

)

floor

coalesce
coalesce

asin sqrt
power sin

cos
cos
power sin

coalesce
coalesce

asin sqrt
power sin

cos
cos
power sin

100

1

1

12742

0 008725 2

0 01745

0 01745

0 008725 2

1

0

12742

0 008725 2

0 01745

0 01745

0 008725 2

'' ''
'' ''

'' ''
'' ''

6

https://docs.decodable.co/docs/function-reference#xml-functions
https://docs.decodable.co/docs/function-reference

After creating a new pipeline and entering the SQL query, clicking the Run Preview button will verify its syntax and then fire up a

new executable environment to process the next 10 records coming in from the source stream and display the results. Decodable

handles all the heavy lifting on the backend, allowing you to focus on working directly with your data streams to ensure that you

are getting the results you need.

{

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 :

}

"order_id"

"branch_id"

"customer_id"

"state_human_readable"

"notification"

"earliest"

"latest"

"branch_distance"

"driver_distance"

"percent_complete"

629812004

382102714

782312311

11

8

27

"dispatched"

"Sorry, your order is running a little late."

"2022-01-01 10:59:00"

"2022-01-01 11:05:00"

7

Fraud Detection
Securing online applications and services is a major requirement for businesses of all types, and threat actors are constantly

increasing the sophistication of their attacks. One example of this is mobile device emulators being used to spoof devices and

mimic user behavior in an attempt to take over legitimate user accounts. With telemetry data such as accelerator and gyroscope

signals, it is possible to train machine learning models to identify fraudulent activity and detect automated bots.

In this example, we'll walk through how the Decodable data service is used to clean, transform, enrich, and aggregate real-time

telemetry data describing a device's accelerometer and touch screen interactions which is being sent from the Moonsense SDK.

The processed data can then be sent onward to a fraud detection model for training or evaluation.

Pipeline Architecture

Here we can see a sample of the raw telemetry data

from a typical user's device. In its current form, it is

not suitable for use by a machine learning model. By

using one or more Decodable pipelines, which are

streaming SQL queries that process data, we can

transform the raw data into a form that is best suited

for how it will be used.

{

 : {

 : {

 : ,

 : ,

 :
 },

 : [

 {

 : ,

 : ,

 : ,

 : {},

 : {

 : ,

 :
 },

 : {

 :
 },

 : ,

 : ,

 :
 }

],

 : ,

 : [

 {

 : ,

 : {

 : ,

 :
 },

 :
 }

]

 },

 : ,

 : ,

 : ,

 :
}

"bundle"
"client_time"

"wall_time_millis"
"timer_millis"
"timer_realtime_millis"

"pointer_data"

"determined_at"
"type"
"buttons"
"delta"
"pos"

"dx"
"dy"

"pressure_range"
"upper_bound"

"radius_major"
"radius_minor"
"size"

"index"
"text_change_data"

"determined_at"
"target"

"target_id"
"target_type"

"masked_text"

"app_id"
"credential_id"
"session_id"
"server_time_millis"

"1640122674127"
"137168"

"137168"

"136893"
"TOUCH"

"1"

"136989"

"de8dfdd2-9121-401e-90a5-c9c2b8c2f9e4"
"range"

"d?"

"Wyk48mvsheCX4rg5d954tj"
"a7RZotQQqYn7wbpei2hAhV"

"SjBbhxS88pngxDgzRYssma"
"1640122674226208"

27
208

1

40.472574869791664
40.472574869791664

14742.263849318027

1

Clean the input data stream

As with most data services pipelines, the first step is to apply a variety of transformations to clean up and simplify the input data.

For this example, the first pipeline is used to parse and restructure the raw data as follows

the time fields will be converted from strings of integers representing epoch milliseconds to timestamp fields, which will

enable more sophisticated processing in subsequent pipelines

several fields that are nested inside the complex JSON source object will be elevated to simple top-level fields, which can

then be more easily accessed in subsequent pipelines

8

https://www.moonsense.io/
https://docs.decodable.co/docs/pipelines

only the fields required by subsequent pipelines will be

included in the output stream, filtering out extraneous fields

and simplifying the data to be processed

After creating a new pipeline and copying in the SQL query,

clicking the Run Preview button will verify its syntax and then

fire up a new executable environment to process the next 10

records coming in from the source stream and display the

results.

insert into
select

as bigint
 as

as bigint
 as

as bigint
 as

as bigint
 as

as
as
as

as
as

as
as

as
from

 moonsense_parsed

 app_id,

 ,

 ,

 to_timestamp_ltz(((server_time_millis,)),)

 server_time,

 to_timestamp_ltz((client_time.wall_time_millis),)

 wall_time,

 (client_time.timer_millis)

 timer_millis,

 (client_time.timer_realtime_millis)

 timer_realtime_millis,

 bundle.location_data location_data,

 bundle.accelerometer_data accelerometer_data,

 bundle.magnetometer_data magnetometer_data,

 bundle.gyroscope_data gyroscope_data,

 bundle.battery battery,

 bundle.activity_data activity_data,

 bundle.orientation_data orientation_data,

 bundle.pointer_data pointer_data

 moonsense_raw

session_id
user_id

cast left

cast

cast

cast

13 3

3

Unnest data stream array

To help detect non-human bot activity, the raw pointer data

from the parsed telemetry data stream can be analyzed. In order

to facilitate that, the pointer_data field, which contains an

array of pointer positions, needs to be unnested (or

demultiplexed) into multiple records. To accomplish this, a

is performed between the moonsense_parsed data stream

and the results of using the unnest function on the

pointer_data field.

For example, if a given input record contains an array of 5

pointer positions, this pipeline will transform each input record

into 5 separate output records for processing by subsequent

pipelines.

When the pipeline is running, the effects of unnesting the input

records can be seen in the Overview tab which shows real-time

data flow statistics. The input metrics will show a given number

of records per second, while the output metrics will show a

higher number based on how many elements are in the

pointer_data array.

cross

join

insert into
select

as bigint as
as
as

as
as

from
cross join as

 moonsense_pointer_records

 (pointer.determined_at) determined_at,

 pointer.pos.dx dx,

 pointer.pos.dy dy,

 pointer.radius_major radius,

 pointer.size size,

 app_id,

 ,

 ,

 server_time,

 wall_time,

 timer_millis,

 timer_realtime_millis

 moonsense_parsed

 unnest(pointer_data) pointer

-- each element of the `pointer_data` array creates a new record

-- non-array fields common to each record are also included in

 the output

cast

session_id
user_id

9

https://www.sqltutorial.org/sql-cross-join/
https://www.sqltutorial.org/sql-cross-join/

Enrich data stream

In the next stage of pipeline processing, we want to determine

how quickly the pointer's position is changing. Because SQL

provides a comprehensive set of powerful such as

power and sqrt, we can leverage these to enrich the data

stream with the results of calculations that are more useful for

subsequent processing.

This somewhat complex SQL query could be broken down into

multiple smaller, simpler queries; but it is also possible to create

pipelines of arbitrary complexity based on your requirements.

An inner nested select query is used to combine the change in

pointer position data from the previous record with the current

record using the lag which provides access

to a record at a specified physical offset which comes before

the current record (in this case that is simply the previous

record). A surrounding select query calculates the change in

time and position between two consecutive pointer position

records. Finally, the outermost select query calculates the

pointer velocity and outputs that into a new data stream for

processing by the next pipeline.

functions,

window function,

insert into
select

case

when is null then
when then
else

end as
from
select

as
as

from
select

over
partition by
order by
as

over
partition by
order by
as

over
partition by
order by
as

from

 moonsense_pointer_velocity

 ,

 server_time,

 determined_at,

 dx,

 dy,

 size,

 t_delta,

 d_delta,

 t_delta
 t_delta =
 d_delta / t_delta

 velocity

 (

 *,

 (determined_at - determined_at_prev) t_delta,

 ((dx - dx_prev,) + (dy - dy_prev,)) d_delta

 (

 *,

 lag(dx,) (

 server_time

) dx_prev,

 lag(dy,) (

 server_time

) dy_prev,

 lag(determined_at,) (

 server_time

) determined_at_prev

 moonsense_pointer_records

)

)

session_id

abs
sqrt power power

session_id

session_id

session_id

0

0 0

2 2

1

1

1

Enrich data stream

On this final pipeline stage, the data is aggregated into summary

statistics that can then be fed into a detection model for training

or evaluation. By leveraging the SQL tumble

 a data distribution matrix is created across a non-

overlapping, continuous window with a fixed duration of 10

seconds. For each set of records, the number of pointer updates

and totals for the interval are calculated.

For this example, we have focused only on the pointer position,

but the original data stream contains a wealth of additional

information, all of which can be proce

group window

function,

insert into
select

as

as
as
as
as

as

as
as
as

as
from table

table

group by

 moonsense_pointer_stats

 window_start,

 window_end,

 ,

 () record_count,

 (inst_velocity) velocity_p0,

 approx_percentile(inst_velocity, .) velocity_p25,

 approx_percentile(inst_velocity, .) velocity_p50 ,

 approx_percentile(inst_velocity, .) velocity_p75,

 (inst_velocity) velocity_p100,

 (inst_velocity) velocity_mean,

 (d_delta) total_distance,

 (t_delta) total_duration,

 (d_delta)/ (t_delta) total_velocity

 (

 tumble(

 moonsense_pointer_velocity,

 descriptor(server_time),

 interval seconds

)

)

 window_start,

 window_end,

session_id
count

min

max

avg
sum
sum
sum sum

session_id

1

0 25
0 5
0 75

 -- # records received during tumble interval

-- calculate a distribution matrix for the pointer velocities

'10'

10

https://docs.decodable.co/docs/function-reference
https://www.sqltutorial.org/sql-window-functions/sql-lag/
https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/dev/table/sql/queries/window-tvf/
https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/dev/table/sql/queries/window-tvf/

Aggregate data stream

In this final pipeline stage, the data is aggregated into summary

statistics that can then be fed into a detection model for training

or evaluation. By leveraging the SQL tumble

, a data distribution matrix is created across a non-

overlapping, continuous window with a fixed duration of 10

seconds. For each set of records, the number of pointer updates

and totals for the interval are calculated.

For this example, we have focused only on the pointer position,

but the original data stream contains a wealth of additional

information, all of which can be processed in a similar manner.

group window

function

insert into
select

as

as
as
as
as

as

as
as
as

as
from table

table

group by

 moonsense_pointer_stats

 window_start,

 window_end,

 ,

 () record_count,

 (inst_velocity) velocity_p0,

 approx_percentile(inst_velocity, .) velocity_p25,

 approx_percentile(inst_velocity, .) velocity_p50 ,

 approx_percentile(inst_velocity, .) velocity_p75,

 (inst_velocity) velocity_p100,

 (inst_velocity) velocity_mean,

 (d_delta) total_distance,

 (t_delta) total_duration,

 (d_delta)/ (t_delta) total_velocity

 (

 tumble(

 moonsense_pointer_velocity,

 descriptor(server_time),

 interval seconds

)

)

 window_start,

 window_end,

session_id
count

min

max

avg
sum
sum
sum sum

session_id

1

0 25
0 5
0 75

 -- # records received during tumble interval

-- calculate a distribution matrix for the pointer velocities

'10'

Send to External System

Clicking the Run Preview button will begin the 10-second

tumble interval and then display the output data stream of this

final step of the multi-stage pipeline for this example, as shown

below. Decodable handles all the heavy lifting on the backend,

allowing you to focus on working directly with your data streams

to ensure that you are getting the results you need.

You can watch a demonstration of this example on the

 channel, Decodable YouTube ML Feature extraction using SQL

pipeline transformations and the Moonsense SDK.

{

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 :
}

"server_time"
"session_id"
"record_count"
"velocity_p0"
"velocity_p25"
"velocity_p50"
"velocity_p75"
"velocity_p100"
"velocity_mean"
"total_distance"
"total_duration"
"total_velocity"

"2022-03-31 18:27:40"
"5kj23DQ31ds2SJF23r"
108
0.0623409298
0.2609802933
0.3587928732
0.4160982341
0.4620938423
0.3220938409
1268.2983742386
4934
0.2572387498

11

https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/dev/table/sql/queries/window-tvf/
https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/dev/table/sql/queries/window-tvf/
https://www.youtube.com/@decodable
http://www.youtube.com/watch?v=9_weUdT2zs0
http://www.youtube.com/watch?v=9_weUdT2zs0

Shipping Logistics Tracking
Shipping's ability to offer efficient and economical long-distance transport puts it at the center of the world economy. The ability

to see, in real-time, logistics and tracking information helps facilitate better transportation decisions leading to reduced costs and

enhanced services, which plays a key role in improving the customer experience as well as increasing profitability. Being able to

offer order tracking provides customers with peace of mind, can win over hesitant buyers, and can even build customer loyalty.

In this example, we'll walk through how the Decodable data service is used to clean, transform, and enrich real-time shipping data.

The processed data can then be used to update package tracking websites and mobile apps for customers, or to feed into

operational models for transport companies.

Pipeline Architecture

Below we can see a sample of raw shipping event data. In its current form, it is more complex and detailed than what customers

want to know about their shipments and what is needed to update a mobile app or website. By using one or more Decodable

 which are streaming SQL queries that process data, we can transform the raw data into a form that is best suited for

how it will be consumed.

pipelines,

the a form that best suited for how it will be consumed.

{

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 :

,

 : ,

 : ,

 : ,

 : ,

 : [

 {

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : . ,

 : .

 },

 {

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : . ,

 : .

 }

]

}

raw data into is

null

null

null

null

null

null

null

null

-

null

null

null

-

"tracking_number" "9405511899223197428490"

"tracking_url" "https://tools.usps.com/go/TrackConfirmAction.action?tLabels=9405511899223197428490"

"status_code" "DE"

"carrier_code" "usps"

"carrier_id"

"carrier_detail_code"

"status_description" "Delivered"

"carrier_status_code" "01"

"carrier_status_description" "Your item was delivered in or at the mailbox at 2:03 pm on September 20, 2021 in SAN

FRANCISCO, CA 94118."

"ship_date"

"estimated_delivery_date"

"actual_delivery_date"

"exception_description"

"events"

"occurred_at" "2021-09-20T19:03:00Z"

"carrier_occurred_at" "2021-09-20T14:03:00"

"description" "Delivered, In/At Mailbox"

"city_locality" "SAN FRANCISCO"

"state_province" "CA"

"postal_code" "94118"

"country_code" ""

"company_name" ""

"signer" ""

"event_code" "01"

"carrier_detail_code"

"status_code"

"status_description"

"carrier_status_code" "01"

"carrier_status_description" "Delivered, In/At Mailbox"

"latitude"

"longitude"

"occurred_at" "2021-09-20T13:10:00Z"

"carrier_occurred_at" "2021-09-20T08:10:00"

"description" "Out for Delivery"

"city_locality" "SAN FRANCISCO"

"state_province" "CA"

"postal_code" "94118"

"country_code" ""

"company_name" ""

"signer" ""

"event_code" "OF"

"carrier_detail_code"

"status_code"

"status_description"

"carrier_status_code" "OF"

"carrier_status_description" "Out for Delivery"

"latitude"

"longitude"

1

37 774

122 475

37 671

122 328

12

https://docs.decodable.co/docs/pipelines

Unnest data stream array

For this example, each record of the raw tracking stream

contains data about the shipment as well as an events field,

which contains an array of tracking data that needs to be

unnested (or demultiplexed) into multiple records. To

accomplish this, a is performed between the

tracking-raw data stream and the results of using the unnest

function on the events field.

For example, if a given input record contains an array of 5

shipping event updates, this pipeline will transform each input

record into 5 separate output records for processing by

subsequent pipelines.

When the pipeline is running, the effects of unnesting the input

records can be seen in the Overview tab which shows real-time

data flow statistics. The input metrics will show a given number

of records per second, while the output metrics will show a

higher number based on how many elements are in the events

array.

After creating a new pipeline and entering the SQL query,

clicking the Run Preview button will verify its syntax and then

fire up a new executable environment to process the next 10

records coming in from the source stream and display the

results.

 cross join

insert into
select

as

as description
as
as

as
as

as
as

 tracking_number,

 status_description,

 carrier_code,

 carrier_status_description

from `tracking-raw`

cross join unnest(`events`) as e

 parsed

 to_timestamp(. ,)

 occurred_at,

 . ,

 . city_locality,

 . state_province,

 . postal_code,

 . country_code,

 . latitude,

 . longitude,

-- each element of the `events` array creates a new record

-- non-array fields common to each record are also included in

 the output

e occurred_at

e description
e city_locality
e state_province
e postal_code
e country_code
e latitude
e longitude

'yyyy-MM-dd''T''HH:mm:ss''Z'''

Transform and enrich data stream

In the next stage of pipeline processing, we want to determine

how far the package traveled and how much time has elapsed

since the last tracking update. Because SQL provides a

comprehensive set of powerful such as cos and

sqrt, we can leverage these to enrich the data stream with the

results of calculations that are more useful for subsequent

processing.

An inner nested select query is used to combine the tracking

data from the previous record with the current record using the

lag which provides access to a record at a

specified physical offset which comes before the current record

(in this case that is simply the previous record). Then the

outermost select query calculates the distance and the

difference between the times.

 functions,

window function,

insert into
select

*

as
*

- * +

* *

* *

- *

as
from
select

*

over
partition by
order by
as

over
partition by
order by
as

over
partition by
order by
as

from

 summary

 ,

 timestampdiff(

 MINUTE,

 occurred_at,

 occurred_at_prev

) elapsed_minutes,

 ((

 (((latitude_prev latitude) .),)
 (latitude .)
 (latitude_prev .)
 (((longitude_prev longitude) .),)

)) distance_traveled

 (

 ,

 lag(occurred_at,) (

 tracking_number

 occurred_at

) occurred_at_prev,

 lag(latitude,) (

 tracking_number

 occurred_at

) latitude_prev,

 lag(longitude,) (

 tracking_number

 occurred_at

) longitude_prev

 parsed

)

12742
0 008725 2

0 01745
0 01745

0 008725 2

1

1

1

asin sqrt
power sin
cos
cos
power sin

-- non-array fields common to each

13

https://www.sqltutorial.org/sql-cross-join/
https://docs.decodable.co/docs/function-reference
https://www.sqltutorial.org/sql-window-functions/sql-lag/

Decodable handles all the heavy lifting on the backend, allowing you to focus on working directly with your data streams to ensure

that you are getting the results you need.

{

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 :

,

 : ,

 : ,

 : ,

 : ,

 :

}

"occurred_at"

"description"

"city_locality"

"state_province"

"postal_code"

"country_code"

"latitude"

"longitude"

"tracking_number"

"status_description"

"carrier_code"

"carrier_status_description"

"occurred_at_prev"

"latitude_prev"

"longitude_prev"

"elapsed_minutes"

"distance_ traveled"

"2021-09-20 19:03:00"

"Delivered, In/At Mailbox"

"SAN FRANCISCO"

"CA"

"94118"

""

"9405511899223197428490"

"Delivered"

"usps"

"Your item was delivered in or at the mailbox at 2:03 pm on September 20, 2021 in SAN

FRANCISCO, CA 94118."

"2021-09-20 13:10:00"

37.774

-122.475

37.671

-122.328

353

17

14

Website Clickstream Analytics
Clickstream data is collected from user activity on the web, and is used to provide insight into how visitors get to the website,

what they do once there, how long they stay on any given page, the number of page visits visitors make, and the number of

unique and repeat visitors. Clickstream analytics have the ability to refine data by processing, cleaning, and transforming the raw

data into convenient structures that make analysis of data easy and more accurate. Using web data, businesses can not only

identify customer needs but can offer customized solutions to cater to the needs of an evolving customer base. The global

clickstream analytics market size was valued at $868.8 million in 2018, and is projected to reach $2.5 billion by 2026, indicating a

significant focus for businesses.

In this example, we'll walk through how the Decodable data service is used to clean, transform, and enrich real-time clickstream

data. The processed data can then be used to inform business decisions.

Pipeline Architecture

Below we can see a sample of raw clickstream data, with one

record per page visit for every user of each website monitored.

Currently, it is not in the best form for analyzing how well the

website is performing. For this, it would be better to have

statistics aggregated over time. By using one or more

Decodable , which are streaming SQL queries that

process data, we can transform the raw data into a form that is

best suited for how it will be consumed.

 pipelines

{

 : ,

 : ,

 : ,

 : ,

 : ,

 : {

 : ,

 : ,

 : ,

 :
 },

 : {

 : ,

 :
 }

}

"event_datetime"
"event"
"user_id"
"click_id"
"site_id"
"page"
"id"
"url"
"previous_id"
"previous_url"

"engagement"
"seconds_on_data"
"percent_viewed"

"2020-11-16 22:59:59"
"view_item"
"f6d4-24d4-4a29-3be1"
"a5cf-179b9-c9d4-83ab"
"wj32-gao1-4w1o-iqp4"

"b7b1-05fb-bf95-a85a"
"/product-67890"

"2905-81e7-be8e-4814"
"/category-tshirts"

79
39.7

Aggregate and enrich data stream

For this example, the pipeline leverages the SQL tumble group

window function to create a set of records across a non-

overlapping, continuous window with a fixed duration of 1 hour.

For each interval, the number of pages visited, the total amount of

time spent reading or interacting with these pages, and an

average of how much of the pages were actually viewed is

calculated, grouped by website and user.

As an alternative, the hop window function could be used to

create a set of records across a fixed duration that hops (or

slides) by a given interval. If the hop interval is smaller than the

window duration, the hopping windows overlap, and records from

the data stream are assigned to multiple windows. Then a

subsequent pipeline could be used to filter the results to one

representing the highest level of engagement over a set duration

for each user for each website.

insert into
select

as
as
as

from table

table

group by

 summary

 window_start,

 window_end,

 site_id,

 ,

 () pages_visited,

 (engagement.seconds_on_data) total_seconds_on_site,

 (engagement.percent_viewed) avg_percent_viewed,

 (

 tumble(

 clickstream,

 descriptor(to_timestamp(event_datetime)),

 interval hour

)

)

 window_start,

 window_end,

 site_id,

user_id
count
sum
avg

user_id

1

'1'

15

https://docs.decodable.co/docs/pipelines
https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/dev/table/sql/queries/window-tvf/
https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/dev/table/sql/queries/window-tvf/

After creating a new pipeline and entering the SQL query, clicking the Run Preview button will verify its syntax and then fire up a

new executable environment to process the next 10 records coming in from the source stream and display the results. Decodable

handles all the heavy lifting on the backend, allowing you to focus on working directly with your data streams to ensure that you

are getting the results you need.

{

 : ,

 : ,

 : ,

 : ,

 : ,

 : ,

 :
}

"window_start"
"window_end"
"user_id"
"site_id"
"pages_visited"
"total_seconds_on_site"
"avg_percent_viewed"

"2020-11-16 14:00:00"
"2020-11-16 15:00:00"

"f6d4-24d4-4a29-3be1"
"wj32-gao1-4w1o-iqp4"

8
426

28.198543

16

Conclusion
As we can see from these use case examples, sophisticated business problems can be addressed in a very straight-forward way

using Decodable pipelines. It is not necessary to create docker containers, there is no SQL server infrastructure to set up or

maintain, all that is needed is a working familiarity with creating the SQL queries themselves.

Today, the world of data is separated into online operational data infrastructure and offline analytical data infrastructure. The two

are generally connected by data integration. With real-time data integration infrastructure that can power both high SLA, low

latency, operational use cases, there’s no reason to maintain a separate data stack for data integration into analytical systems. By

feeding both operational and analytical data infrastructure from the system and data, costs are reduced, compliance becomes

simpler, data quality increases, and analytical systems better reflect reality.

Many companies are claiming the data warehouse is the center of the universe and, for many people, it is. However, if Snowflake

or Databricks suddenly became inexpensive tomorrow, they wouldn’t be low latency enough for operational workloads. If they

were low latency, they wouldn’t be transactional and strongly consistent. If they were transactional and strongly consistent, they

wouldn’t have application framework support.

The fact is, data warehouses are an enormous destination for data with many workloads, but not all. The operational world is

made up of purpose-built systems: streaming systems, messaging systems, OLTP databases, key-value stores (DHTs), online

feature stores, ultra-fast in memory caches, document databases, and a myriad of SaaS business applications, each optimized for

a specific workload. While the data warehouse is trying to expand, it is simply not feasible for a single system to satisfy all of

these workloads. The data warehouse has never been, nor will ever be, the center of the world. Embracing that reality, Decodable

will be the platform that ties all of these systems together.

Next Steps

This eBook explored five common use case scenarios, with available on our website.

To follow along with these use case examples, sign up on the website for a free

All code in this guide can be found in our GitHub repo,

You can watch demonstrations of several examples on the Decodable YouTube channel,

Additional documentation for all of Decodable's services is available at

Please consider joining us on our

additional examples

decodable.co Decodable account.

 github.com/decodableco/examples.

youtube.com/@decodable.

docs.decodable.co.

community Slack.

17

https://www.decodable.co/solution/all
https://decodable.co/
https://app.decodable.co/-/accounts/create
https://github.com/decodableco/examples
https://www.youtube.com/@decodable
https://docs.decodable.co/docs
https://join.slack.com/t/decodablecommunity/shared_invite/zt-uvow71bk-Uf914umgpoyIbOQSxriJkA

